数据的特征预处理

单个特征

(1)归一化

归一化首先在特征(维度)非常多的时候,可以防止某一维或某几维对数据影响过大,也是为了把不同来源的数据统一到一个参考区间下,这样比较起来才有意义,其次可以程序可以运行更快。 例如:一个人的身高和体重两个特征,假如体重50kg,身高175cm,由于两个单位不一样,数值大小不一样。如果比较两个人的体型差距时,那么身高的影响结果会比较大,k-临近算法会有这个距离公式。

min-max方法

常用的方法是通过对原始数据进行线性变换把数据映射到[0,1]之间,变换的函数为:

X=xminmaxminX^{'}{=}\frac{x-min}{max-min}

其中min是样本中最小值,max是样本中最大值,注意在数据流场景下最大值最小值是变化的,另外,最大值与最小值非常容易受异常点影响,所以这种方法鲁棒性较差,只适合传统精确小数据场景。

  • min-max自定义处理

这里我们使用相亲约会对象数据在MatchData.txt,这个样本时男士的数据,三个特征,玩游戏所消耗时间的百分比、每年获得的飞行常客里程数、每周消费的冰淇淋公升数。然后有一个 所属类别,被女士评价的三个类别,不喜欢、魅力一般、极具魅力。 首先导入数据进行矩阵转换处理

import numpy as np

def data_matrix(file_name):
  """
  将文本转化为matrix
  :param file_name: 文件名
  :return: 数据矩阵
  """
  fr = open(file_name)
  array_lines = fr.readlines()
  number_lines = len(array_lines)
  return_mat = zeros((number_lines, 3))
  # classLabelVector = []
  index = 0
  for line in array_lines:
    line = line.strip()
    list_line = line.split('\t')
    return_mat[index,:] = list_line[0:3]
    # if(listFromLine[-1].isdigit()):
    #     classLabelVector.append(int(listFromLine[-1]))
    # else:
    #     classLabelVector.append(love_dictionary.get(listFromLine[-1]))
    # index += 1
  return return_mat

输出结果为

[[  4.09200000e+04   8.32697600e+00   9.53952000e-01]
 [  1.44880000e+04   7.15346900e+00   1.67390400e+00]
 [  2.60520000e+04   1.44187100e+00   8.05124000e-01]
 ...,
 [  2.65750000e+04   1.06501020e+01   8.66627000e-01]
 [  4.81110000e+04   9.13452800e+00   7.28045000e-01]
 [  4.37570000e+04   7.88260100e+00   1.33244600e+00]]

我们查看数据集会发现,有的数值大到几万,有的才个位数,同样如果计算两个样本之间的距离时,其中一个影响会特别大。也就是说飞行里程数对于结算结果或者说相亲结果影响较大,但是统计的人觉得这三个特征同等重要,所以需要将数据进行这样的处理。

这样每个特征任意的范围将变成[0,1]的区间内的值,或者也可以根据需求处理到[-1,1]之间,我们再定义一个函数,进行这样的转换。

def feature_normal(data_set):
    """
    特征归一化
    :param data_set:
    :return:
    """
    # 每列最小值
    min_vals = data_set.min(0)
    # 每列最大值
    max_vals = data_set.max(0)
    ranges = max_vals - min_vals
    norm_data = np.zeros(np.shape(data_set))
    # 得出行数
    m = data_set.shape[0]
    # 矩阵相减
    norm_data = data_set - np.tile(min_vals, (m,1))
    # 矩阵相除
    norm_data = norm_data/np.tile(ranges, (m, 1)))
    return norm_data

输出结果为

[[ 0.44832535  0.39805139  0.56233353]
 [ 0.15873259  0.34195467  0.98724416]
 [ 0.28542943  0.06892523  0.47449629]
 ...,
 [ 0.29115949  0.50910294  0.51079493]
 [ 0.52711097  0.43665451  0.4290048 ]
 [ 0.47940793  0.3768091   0.78571804]]

这样得出的结果都非常相近,这样的数据可以直接提供测试验证了

  • min-max的scikit-learn处理

scikit-learn.preprocessing中的类MinMaxScaler,将数据矩阵缩放到[0,1]之间

>>> X_train = np.array([[ 1., -1.,  2.],
...                     [ 2.,  0.,  0.],
...                     [ 0.,  1., -1.]])
...
>>> min_max_scaler = preprocessing.MinMaxScaler()
>>> X_train_minmax = min_max_scaler.fit_transform(X_train)
>>> X_train_minmax
array([[ 0.5       ,  0.        ,  1.        ],
       [ 1.        ,  0.5       ,  0.33333333],
       [ 0.        ,  1.        ,  0.        ]])

(3)标准化

常用的方法是z-score标准化,经过处理后的数据均值为0,标准差为1,处理方法是:

X=xμσX^{'}{=}\frac{x-\mu}{\sigma}

其中μ\mu是样本的均值,σ\sigma是样本的标准差,它们可以通过现有的样本进行估计,在已有的样本足够多的情况下比较稳定,适合嘈杂的数据场景

sklearn中提供了StandardScalar类实现列标准化:

In [2]: import numpy as np

In [3]: X_train = np.array([[ 1., -1.,  2.],[ 2.,  0.,  0.],[ 0.,  1., -1.]])

In [4]: from sklearn.preprocessing import StandardScaler

In [5]: std = StandardScaler()

In [6]: X_train_std = std.fit_transform(X_train)

In [7]: X_train_std
Out[7]:
array([[ 0.        , -1.22474487,  1.33630621],
       [ 1.22474487,  0.        , -0.26726124],
       [-1.22474487,  1.22474487, -1.06904497]])

(3)缺失值

由于各种原因,许多现实世界的数据集包含缺少的值,通常编码为空白,NaN或其他占位符。然而,这样的数据集与scikit的分类器不兼容,它们假设数组中的所有值都是数字,并且都具有和保持含义。使用不完整数据集的基本策略是丢弃包含缺失值的整个行和/或列。然而,这是以丢失可能是有价值的数据(即使不完整)的代价。更好的策略是估算缺失值,即从已知部分的数据中推断它们。

(1)填充缺失值 使用sklearn.preprocessing中的Imputer类进行数据的填充

class Imputer(sklearn.base.BaseEstimator, sklearn.base.TransformerMixin)
    """
    用于完成缺失值的补充

    :param param missing_values: integer or "NaN", optional (default="NaN")
        丢失值的占位符,对于编码为np.nan的缺失值,使用字符串值“NaN”

    :param strategy: string, optional (default="mean")
        插补策略
        如果是“平均值”,则使用沿轴的平均值替换缺失值
        如果为“中位数”,则使用沿轴的中位数替换缺失值
        如果“most_frequent”,则使用沿轴最频繁的值替换缺失

    :param axis: integer, optional (default=0)
        插补的轴
        如果axis = 0,则沿列排列
        如果axis = 1,则沿行排列
    """
>>> import numpy as np
>>> from sklearn.preprocessing import Imputer
>>> imp = Imputer(missing_values='NaN', strategy='mean', axis=0)
>>> imp.fit([[1, 2], [np.nan, 3], [7, 6]])
Imputer(axis=0, copy=True, missing_values='NaN', strategy='mean', verbose=0)
>>> X = [[np.nan, 2], [6, np.nan], [7, 6]]
>>> print(imp.transform(X))                          
[[ 4.          2.        ]
 [ 6.          3.666...]
 [ 7.          6.        ]]

多个特征

降维

PCA(Principal component analysis),主成分分析。特点是保存数据集中对方差影响最大的那些特征,PCA极其容易受到数据中特征范围影响,所以在运用PCA前一定要做特征标准化,这样才能保证每维度特征的重要性等同。

sklearn.decomposition.PCA

class PCA(sklearn.decomposition.base)
   """
   主成成分分析

   :param n_components: int, float, None or string
       这个参数可以帮我们指定希望PCA降维后的特征维度数目。最常用的做法是直接指定降维到的维度数目,此时n_components是一个大于1的整数。
       我们也可以用默认值,即不输入n_components,此时n_components=min(样本数,特征数)

   :param whiten: bool, optional (default False)
      判断是否进行白化。所谓白化,就是对降维后的数据的每个特征进行归一化。对于PCA降维本身来说一般不需要白化,如果你PCA降维后有后续的数据处理动作,可以考虑白化,默认值是False,即不进行白化

   :param svd_solver:
      选择一个合适的SVD算法来降维,一般来说,使用默认值就够了。
    """

通过一个例子来看

>>> import numpy as np
>>> from sklearn.decomposition import PCA
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> pca = PCA(n_components=2)
>>> pca.fit(X)
PCA(copy=True, iterated_power='auto', n_components=2, random_state=None,
  svd_solver='auto', tol=0.0, whiten=False)
>>> print(pca.explained_variance_ratio_)
[ 0.99244...  0.00755...]